国内外阻燃技术最新进展有哪些?(上)
高分子材料是与陶瓷材料、金属材料并重的三大材料之一,其使用范围几乎涵盖人们工作生活的方方面面。然而,绝大多数高分子材料都是以碳为骨架结构聚合而成的,在使用过程中如遇明火很容易燃烧,对人类的生命、财产安全造成严重威胁。
因此,关于高分子阻燃性能的研究是非常必要的。
根据高分子材料燃烧的特点,可以采用各种不同方式阻断其燃烧过程的进行,从而达到阻燃的目的。
1930 年人们发现了氧化锑-氯化石蜡协效阻燃体系,并很快在一些高分子材料中成功应用。
20 世纪50年代,Hooker公司用反应性单体氯菌酸研制出阻燃不饱和聚酯,随后新的含溴、磷的反应型阻燃单体不断出现。
20世纪80年代阻燃领域开展了毒性与环境问题的探讨,无卤、抑烟及减毒成为 阻燃剂发展的新目标,随着高分子材料的迅速发展,对于阻燃技术、阻燃机理的研究也日益广泛深入。
在气相阻燃、凝聚相阻燃和中断热交换阻燃机理方面,人们做了各种阻燃技术的研究探讨。近年来,复合阻燃、协效阻燃、大分子阻燃等阻燃技术受到人们的关注,本文基于当前高分子材料阻燃技术的研究,概览一下近年来国内外这几类阻燃技术的进展情况。
一、复合阻燃技术
层状双氢氧化物(LDH)
层状双金属氢氧化物(LDHs) 为层状无机纳米材料,与氢氧化铝 (Al(OH)3, ATH) 和氢氧化镁 (Mg( OH) 2,MH)具有相似的组成和结构,兼具两者的优点,且其本身不含有任何有毒物质,因此是一种理想的阻燃和抑烟型绿色阻燃剂。LDHs的阻燃机理为 LDH 在燃烧过程中可以分解成 CO2、H2O、金属氧化物等。一方面,CO2和H2O可以稀释可燃气体和O2,降低燃烧时的温度;另一方面,金属氧化物有利于炭层的形成,起到隔绝O2和热量的作用,进一步降低基材的降解速率。
纳米金属有机框架材料(MOFs)
MOFs 是由有机配体与金属离子或团簇通过自组装的方式形成的具有网状结构的有机 - 无机杂化多孔材料,其结构见图。
MOFs 的设计具有灵活性,结构具有可调性。不论是针对有机配体还是金属配位物,只要经过合理的改性设计都可获得具有某种特定性能的MOFs,这预示着 MOFs 具有广阔的应用前景。
类沸石咪唑酯框架材料 ( ZIFs) 结合 了传统 MOFs 和沸石的优点,性能优异。ZIFs 由过渡元素与含咪唑环的有机配体自组装形成,其易于合成、 稳定性能良好、孔道规整、结构多样、催化活性较高。
笼型倍半硅氧烷(POSS)
POSS 在改善材料阻燃性能的同时,能有效改善聚合物的力学性能、加工性能及耐热性能等。POSS 具有有机 - 无机杂化、笼型、纳米结构 的特点,向聚合物中引入POSS可提高其耐热性能、阻燃性能、力学性能,降低其介电常数。POSS及其衍生物作为高分子无卤阻燃剂,属于新型无卤阻燃剂的一大类,并得到了广泛应用。
石墨烯(GNS)
GNS 是一种单层碳原子组成的二维纳米片层材料,下图为 GNS 及氧化石墨烯(GO)的结构示意图。
GNS 及其衍生物由于纳米效应而有良好的阻燃性能,特别是 GNS 作为阻燃助剂与无机纳米材料结合可形成用途广泛的阻燃材料。与传统碳系阻燃剂如石墨、膨胀石墨、氧化石墨等相比,GNS 独特的二维纳米片层结构具有更高的阻燃效率 ; 而与碳纳米管相比,GNS 价格相对低廉,更适合工业 应用。
GNS 及其衍生物的阻燃机理为:
( 1) GNS 及 GO 都具有独特 的二维层状结构,在燃烧过程 中GNS 可以促进生成致密且连续的碳层结构,起到了物理隔离屏蔽的作用;
(2)层状结构使得 GNS 及其衍生物具有了较大的比表面积,能够更加有效地吸附可燃性有机挥发物,或者阻碍这些有机挥发物的释放和扩散;
(3) GNS 尤其是 GO 材料表面都含有丰富的活性基团,在低温下,GO 上的含氧基团分解和脱水反应,在燃烧过程中,这种反应产生的气体能吸收大量的热量降低聚合物基体温度,同时,脱水气体还能稀释火焰周围的 O2浓度,达到阻燃效果;
(4) GNS 和 GO 能与聚合物材料的分子链之间产生相互作用,形成三维网络结构,在燃烧过程中,这种三维网络结构防止了熔融滴落现象的发生,提高复合材料的阻燃性。